Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Food Microbiol ; 110: 104164, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2068988

ABSTRACT

Since the first SARS-CoV-2 outbreak in Wuhan, China, there has been continued concern over the link between SARS-CoV-2 transmission and food. However, there are few studies on the viability and removal of SARS-CoV-2 contaminating food. This study aimed to evaluate the viability of SARS-CoV-2 on food matrices, depending on storage temperature, and inactivate the virus contaminating food using disinfectants. Two SARS-CoV-2 strains (L and S types) were used to contaminate lettuce, chicken, and salmon, which were then stored at 20,4 and -40 °C. The half-life of SARS-CoV-2 at 20 °C was 3-7 h but increased to 24-46 h at 4 °C and exceeded 100 h at -40 °C. SARS-CoV-2 persisted longer on chicken or salmon than on lettuce. Treatment with 70% ethanol for 1 min inactivated 3.25 log reduction of SARS-CoV-2 inoculated on lettuce but not on chicken and salmon. ClO2 inactivated up to 2 log reduction of SARS-CoV-2 on foods. Peracetic acid was able to eliminate SARS-CoV-2 from all foods. The virucidal effect of all disinfectants used in this study did not differ between the two SARS-CoV-2 strains; therefore, they could also be effective against other SARS-CoV-2 variants. This study demonstrated that the viability of SARS-CoV-2 can be extended at 4 and -40 °C and peracetic acid can inactivate SARS-CoV-2 on food matrices.


Subject(s)
COVID-19 , Disinfectants , Animals , Peracetic Acid/pharmacology , Salmon , SARS-CoV-2 , Lettuce , Chickens , Ethanol , Seafood , Disinfectants/pharmacology
2.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1745034

ABSTRACT

A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.


Subject(s)
DNA/chemistry , DNA/metabolism , Dendrimers/chemistry , Phenols/chemistry , Sulfides/chemistry , Animals , Male , Molecular Conformation , Salmon , Spermatozoa/metabolism
3.
Food Funct ; 11(6): 5565-5572, 2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-1721602

ABSTRACT

To date, no specific drug has been discovered for the treatment of COVID-19 and hence, people are in a state of anxiety. Thus, there is an urgent need to search for various possible strategies including nutritional supplementation. In this study, we have tried to provide a reference for protein supplementation. Specifically, 20 marine fish proteins were subjected to in silico hydrolysis by gastrointestinal enzymes, and a large number of active peptides were generated. Then, the binding abilities of these peptides to SARS-CoV-2 main protease and monoamine oxidase A were assessed. The results showed that NADH dehydrogenase could be a good protein source in generating potent binders to the two enzymes, followed by cytochrome b. In addition, some high-affinity oligopeptides (VIQY, ICIY, PISQF, VISAW, AIPAW, and PVSQF) were identified as dual binders to the two enzymes. In summary, the supplementation of some fish proteins can be helpful for COVID-19 patients; the identified oligopeptides can be used as the lead compounds to design potential inhibitors against COVID-19 and anxiety.


Subject(s)
Antiviral Agents/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/virology , Dietary Supplements , Fish Proteins/metabolism , Monoamine Oxidase/metabolism , Pneumonia, Viral/virology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Aquatic Organisms , Betacoronavirus/enzymology , COVID-19 , Coronavirus Infections/drug therapy , Decapodiformes/metabolism , Fish Proteins/chemistry , Fish Proteins/therapeutic use , Fishes/metabolism , Models, Molecular , Molecular Docking Simulation , Monoamine Oxidase Inhibitors , Pandemics , Perciformes/metabolism , Pneumonia, Viral/drug therapy , Protein Binding , Protein Conformation , SARS-CoV-2 , Salmon/metabolism , Tuna/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL